Distributed Engineered Autonomous Agents : Satoshi Fantasy

Jay Y. Berg
info@satoshifantasy.com

April 2014

1 Introduction

The Byzantine battle plan is for each division to attack simultaneously from separate
locations. The exact time of the attack will be communicated from one general to another
by messenger. The problem is, how does a general know when everyone received the
message? How long must he wait? Using acknowledgement messages presents the same
problem as the original message. Then there is a problem of trust, if even one messenger
is a traitor, the will be a fork in the plan, with some generals using the bad data.

Distributed system designers are notorious for describing their systems first by its known
limitations, and then by the practical workaround. The Byzantine Generals’ Problem and
its impossibility proofs are the root cause of these limitations. [1]

This paper details Satoshi Fantasy, a distributed autonomous fantasy football game
named after Satoshi Nakamoto, the creator of bitcoin. Bitcoin is considered the first
successful distributed autonomous system. Its main innovation is the the proof-of-work
block-chain. Although bitcoin does not solve the the general Byzantine Generals’ Problem
[2]. In the context of a peer-to-peer electronic cash system, it is a“good enough” pragmatic
engineered solution to the problems of trust and time. Satoshi Nakamoto has brought
esoteric distributed system design problems into the mainstream consciousness, and with
it a newfound public trust for logical, time-tested, distributed consensus protocols.

Overview

Satoshi Fantasy is a game that uses Fantasybits as tokens based on fantasy football points.
Fantasybits are a representation of a fantasy football players skills. By using a proof-of-skill
block-chain, the network is ultimately controlled by the most skilled and knowledgeable
fantasy football players. Each player has a unique Fantasy Name that is tied to a crypto-
graphic private key. Problems of trust and time, common to all distributed protocols, are
solved within this context.

Driving Factors

CJ Spiller, running back for the Buffalo Bills was one of the biggest fantasy busts in 2013.
After averaging 6 yards per carry in 2012, he was was being drafted in the first round of
most 2013 fantasy drafts [3]. What if a fantasy expert saw this coming? He knew that
Spiller was way over-valued. How can he turn this knowledge into value?

Over the past 10 years fantasy football has tripled in size [4]. In 2013, the High Stakes
Fantasy Football Players Championship had over 5800 entries and over 6 million in payouts
[5]. Fantasy football is played by drafting a team, and submitting your lineup each week.
Some leagues allow trading players, but the high-stakes public leagues do not. There are
also weekly games and a thriving professional expert service industry.

Currently if someone wanted to “sell” Spiller, he could a) trade him, if owned; b) not
draft him; ¢) blog or tweet about it; and d) not pick him in weekly fantasy games.

Satoshi fantasy will enable buying and selling a players fantasy season pro-
duction with fantasybits. Fantsybits are acquired by accurately projecting
weekly fantasy point results.

2 Fantasybits

Fantasybits are created for each fantasy point scored by an NFL player. Unlike digital
currency, there is no pre-distribution, distribution schedule, mining, or minting. This
feature enables the use of a proof-of-skill block-chain discussed in section 5. Fantasybits
are awarded to fantasynames, based on weekly projections of fantasy results. Fantasybits
are fungible, and each one has a season and a real players name attached to it. The value
of fantasybits come from the fact that they are scarce, difficult to acquire, and
are needed for buying and selling players.

Projections

During each week of the fantasy season, up until kickoff, projections can be made. All that
is needed to make projections is a fantasyname. This is done by signing a pointProjection
event and sending it to the network. Every projection that is in the block-chain, on
time, is eligible for a payout. Once a block containing the consensus results is received, a
deterministic distribution algorithm is run to determine the payouts to each player.

Distribution Algorithm: (see appendix B) Let R equal actual results and p,, equal the
projections made by each player. Take the difference of the projection from the results

d(p). and then get the average difference D.

Filter out projections that are below average or are 100% or more off the mark F(d).

0 ifd>Dord>R
F(d) = { 1 otherwise

Calculate unitpayout X, which will distribute more coins to the better predictions.
R
>on (R =d(pn)) x F(d(pn)))
Finally, the award function A(p) determines how many fantasy points are awarded for each

projection, this is multiplied by 100 for fantasybits.
A(p) = X x (R —d(p)) x F(d(p))

X =

Any points leftover, L, due to bad or no projections get distributed to the block signer .

L:R_ZA(pn)

3 Fantasy Name

Since there is no cost to making projections, the system is vulnerable to a Sybil attack. An
attacker would write a program to create millions of fantasy names in an attempt to control
the network. To mitigate this risk, there needs to be some kind of cost or effort involved in
receiving a fantasy name. Each player mines his own fantasy name into existence
by solving a cryptographic hash. Once mined, a nameProof event is triggered and
this proof-of-work will eventually get verified by the peer network.

Score and Rank

There are four distinct ways of keeping score of fantasybits and rank of fantasy names.
These values are used to determine ones ability to sign blocks see section 5.

Skill: gross total fantasybits earned; can only increase; not transferable
Data: data feed ranking; cannot be less than Skill; can be assigned to an agent.
Stake: net present fantasybits balance; transferable

Time: time-sync rankings; cannot be less than Stake, can be assigned to an agent.

Agents

Each fantasy name may assign a peer to be their agents of data and time. The skill and
stake values of the assigner will be added to the data and time rankings of the agent
respectively. If a fantasy name assigned herself as her own agent, she becomes a volunteer
and must be willing to do the same for the entire network. By default agents are assigned
as default consensus, which are decided by skill and stake consensus proofs.

If a single agent represents a majority of the network, she becomes an oracle,
and a central point of control for those critical time periods, such as during live
games. In fact, agents are just fantasy names appointed by the consensus of the network.
Free market economics forces would choose the most capable agents.

4 State Machine

The underlying protocol changes it behavior based on its current state, there are also
different block-chain and event/transaction rules, see section 5 . A transition to a different
state is accomplished with signing and publishing a block. The particular proof required
to sign a block, also depends on the transition context. See figure 1.

Events

A transaction that transfers fantasybits, is only one of many event types. In contrast to
bitcoin, the transfer transaction is not a core feature. Point projections followed by fantasy
name mining are core features in satoshi fantasy. Following is the list of events, in order
of significance.

nameProof
contains proof-of-work data, sent by new players to claim their fantasy name, signed
by fantasy name.

pointProjection
contains the playerID, week, and point projection. sent and signed by fantasy name.

dataTransition
contains game results, draft results, player meta-data or schedule data, sent by a
data agent, signed by consensus of skill.

timeTransition
contains trading session, exchange events, or any time ordered data, sent by a time
agent, signed by consensus of stake.

SatoshiFantasy

SeasonStart/
push(InSeason::PreGame

Season

SeasonEnd

InSeason

PreGame

er/ “lose/

TradingSession

InGame

WeekOver/

Enp(é}edmnhnd)

exchangeOrder
contains limit order, price, quantity, playerID. first created and signed by fantasy

Figure 1: state machine

name, then stamped and signed by time agent.

transferTransaction
contains amount to transfer, sender and receiver fantasy names, signed by sender.

Deterministic Transactions

coinbaseTransaction
awards new fantasybits based on the distribution algorithm. triggered by a data-

A state transition event can trigger multiple events and transactions.

Transition “WeekOver” event. See section 2 and figure 1 .

exchangeExecution
contains fills, and order status, generated by internal matching-engine (section 6)
triggered by timeTransition “TradeOpen” followed by multiple exchnageOrder events.

clearingTransaction
contains transferTransation events, generated by internal engine. triggered by a
timeTransition “TradeClose” followed by multiple exchangeExecutions.

5 Block Chain

In bitcoin, a block chain is an ordered sequence of blocks, with each block containing
an unordered set of transfer transactions. A miner does his proof-of-work computations
based on the the previous block(s). This solves the problem of double spending, where the
same bitcoin is simultaneously transferred to two different addresses. The core event
in satoshi fantasy, pointProjections, do not transfer funds, so double spending
does not apply.

The satoshi fantasy block-chain is path dependent. Current events determine when
a block will be created and what kind of proofs are needed. The block-chain is really
two different block-chains; 1. proof-of-skill containing nameProofs, pointProjections and
dataTransitions events. 2. proof-of-stake containing timeTransitions, exchangeOrders and
transferTransactions events.

Proof-of-Skill

In proof-of-stake currencies, your chance of signing a new block is proportional to your
wealth. Proof-of-skill could be thought of as a proof-of-stake based on only coinbase trans-
actions.

This block chain only requires a new block in the event of a dataTransition. This can
be hours, days, or months, depending on the state; so event-chains are formed instead.
nameProofs are chained to any previous generation since the last block. pointProjections
are only chained together when modifying a projection, otherwise they are chained to
the previous block. A dataTransition event requires a new block and and a proof-of-data
consensus.

Consensus

More than 50% of skill or stake is needed for data and time transitions, re-
spectively. This is done by recursively signing the block. Designated agents are used to
sign for a player, which enables a practical implementation of the consensus protocol.

Nothing-at-Stake

Proof-of-stake block chains have a known flaw, that when presented with second block,
there no cost for peers to follow both chains. This creates a bifurcation, or fork, on the
chain. This is not a problem for the proof-of-skill, nameProof and pointProjection events,
because it will get resolved by consensus on the next dataTransition event. However with
transferTransactions the problem is still there, because each block depends on the previous.
The nothing-at-stake problem creates a double spending problem as well.

One solution is to wait for the next timeTransition consensus, with stake values derived
from the point of the bifurcation. However this can take months during the off-season. A
second solution would be to use centralized time syncing, see section 6. Even if a fork in
the stake block does occur, this would not effect the proof-of-skill blocks.

Sanity Checkpoints

Otherwise knows as developer checkpoints; this static data, gets added to the source code
on a schedule. Bitcoin uses checkpoints, so in the unlikely event that a peer shows up with
a complete alternate block chain, the protocol is protected [6]. Fantasybits are protected
with end of season checkpoints.

6 Distributed Exchange

A pure decentralized distributed exchange is as impossible as solving the general Byzantine
Generals problem. Exchange limit order books are path dependent, the time and order of
events matter. In a pure decentralized distributed order book, all peers will have a different
market snapshot. So, for a trader, there is no way to know the real status of her orders,
or position, until a after blocked is signed.

Say there was a major capitulation move followed by a snapback in price, this would
incentivize block signers to front-run, and losers to attempt forks.

Satoshi fantasy solves this with centralized time syncing. A proof-of-time con-
sensus chooses the time syncing agent. All exchangeOrder events would need to be times-
tamped by the agent, who broadcasts them back to the network. The matching-engines
are distributed, so each peer has a copy of the same market. This enables determinis-
tic exchangelFxecutions and clearingTransactions. Trading sessions opening and closing is
accomplished with timeTransitions events and proof-of-time consensus.

7

Contact

Jay Y. Berg
info@satoshifantasy.com
(650) 560-5021
www.satoshifantsy.com

References

[1]

Nancy Lynch. A hundred impossibility proofs for distributed computing. In Proceedings
of the eighth annual ACM Symposium on Principles of distributed computing, pages 1—
28. ACM, 1989.

kjj. Bitcoin theory (byzantine generals and beyond).
https://bitcointalk.org/index.php?topic=99631.

http://www.rotoworld.com/player/nfl /5566 /cj-spiller.

JORDAN WEISSMANN. The insane growth of fantasy sports—in 1 graph.
http://www.theatlantic.com/business/archive/2013/09/the-insane-growth-of-fantasy-
sports-in-1-graph /279532/, sep 2010.

http://www.myffpc.com/ffpccontent / ?ffpc-history.

monocolor. What are checkpoints in bitcoin code?
https://bitcointalk.org/index.php?topic=194078.0.

1 NameValuePairs<double> DistribuePointsAvg::distribute(const Int result) <

© 0 N O s W N

e T s o =
o N ks W N = O

A Scoring Rules

Passing Yards
Passing TD
Pass interception

1 point per 20 yards or .05 points per yard
4 points
-1 points

Rushing Yards

1 point per 10 yards or .1 point per yard

Rushing TD 6 points
Receiving Yards 1 point per 10 yards or .1 point per yard
Receiving TD 6 Points

Reception 1 point per reception

2-point conversion | 2 points for passer, rusher, receiver
PAT kick 1 point

Field Goal 3 points for 1-30 yards, .1 point for each additional yard.
Sack 1 point

Takeaway 2 points

Defensive TD 6 points

Safety 5 points

Shutout 12 points

1-6 points allowed | 8 points

7-10 points allowed | 10 points

B Distribution Algorithm

—_~

const

double mean =
vector<Int> di
diffs.reserve(

for (const auto& pair

Int diff
meant—=diff
diffs.empl

}
mean /= projec

Int maxdiff

Int sum = accu
[maxdiff ,r

0;
ffs;
projections.size());

projections) {
abs (result—pair.second);
)

ace_back (diff);
tions.size () ;

min ((Int)lround(mean) ,result);

mulate (begin(diffs), end(diffs), O,
esult](const Int sum,const Int val)

19
20
21
22
23
24
25
26
27
28
29
30
31

{
)

return sum + ((val < maxdiff) ? result—val

double payout = static_cast <double>(result) / sum;
NameValuePairs<double> award{};

for (const auto& pair : projectioms) {
Int diff = abs(result—pair.second);
if (diff < maxdiff)

0);

award.emplace_back(pair.first,(result—diff)xpayout);

}

return award;

10

